Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11

Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11

  • Admin
  • 31-01-2021
  • 117 view

Mời quý thầy cô cùng các bạn học sinh lớp 11 tham khảo tài liệu Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và bài tập có đáp án kèm theo được NVAD.biz đăng tải trong bài viết dưới đây.

Tổng hợp kiến thức về Góc giữa hai mặt phẳng

1. Định nghĩa góc giữa 2 mặt phẳng

- Khái niệm: Góc giữa 2 mặt phẳng là gì? Góc giữa 2 mặt phẳng là góc được tạo bởi hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

Trong không gian 3 chiều, góc giữa 2 mặt phẳng còn được gọi là ‘góc khối’, là phần không gian bị giới hạn bởi 2 mặt phẳng. Góc giữa 2 mặt phẳng được đo bằng góc giữa 2 đường thẳng trên mặt 2 phẳng có cùng trực giao với giao tuyến của 2 mặt phẳng.

- Tính chất: Từ định nghĩa trên ta có:

  • Góc giữa 2 mặt phẳng song song bằng 0 độ,
  • Góc giữa 2 mặt phẳng trùng nhau bằng 0 độ.

2. Cách xác định góc giữa 2 mặt phẳng

Để có thể xác định chính xác góc giữa 2 mặt phẳng bạn áp dụng những cách sau:

Gọi P là mặt phẳng 1, Q là mặt phẳng 2

Trường hợp 1: Hai mặt phẳng (P), (Q) song song hoặc trùng nhau thì góc của 2 mặt phẳng bằng 0,

Trường hợp 2: Hai mặt phẳng (P), (Q) không song song hoặc trùng nhau.


 Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11
Cách xác định góc giữa hai mặt phẳng

Cách 1: Dựng 2 đường thẳng n và p vuông góc lần lượt với 2 mặt phẳng (P), (Q). Khi đó góc giữa 2 mặt phẳng (P), (Q) là góc giữa 2 đường thẳng n và p.


 Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11
Cách xác định góc giữa hai mặt phẳng

Cách 2: Để xác định góc giữa 2 mặt phẳng đầu tiên bạn cần xác định giao tuyến Δ∆của 2 mặt phẳng (P) và (Q). Tiếp theo, bạn tìm một mặt phẳng (R) vuông góc với giao tuyến Δ∆của 2 mặt phẳng (P), (Q) và cắt 2 mặt phẳng tại các giao tuyến a, b.

⇒Góc giữa 2 mặt phẳng (P), (Q) là góc giữa a và b.

3. Phương pháp tính góc giữa 2 mặt phẳng

Có 2 phương pháp bạn có thể áp dụng để tính góc giữa 2 mặt phẳng:

Phương pháp 1: Sử dụng hệ thức lượng trong tam giác vuông, định lý hàm số sin, hàm số cos.

Ví dụ 1: Cho hình chóp tứ giác đều S.ABCD có đáy là ABCD và độ dài các cạnh đáy bằng a, SA = SB = SC = SD = a. Tính cos góc giữa hai mặt phẳng (SAB) và (SAD).


 Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11

Phương pháp 2: Dựng mặt phẳng phụ (R) vuông góc với giao tuyến c mà (Q) giao với (R) = a, (P) giao với (R) = b.

Suy ra 
 Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11


 Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11

4. Bài tập áp dụng

Câu 1: Cho tam giác ABC vuông tại A. Cạnh AB = a nằm trong mặt phẳng(P), cạnh AC = a√2 , AC tạo với (P) một góc 60°. Chọn khẳng định đúng trong các khẳng định sau?

A. (ABC) tạo với (P) góc 45°

B. BC tạo với (P) góc 30°

C. BC tạo với (P) góc 45°

D. BC tạo với (P) góc 60°

Câu 2: Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai ?

A. Góc giữa hai mặt phẳng (ACD) và (BCD) là góc ∠AIB

B. (BCD) ⊥ (AIB)

C. Góc giữa hai mặt phẳng (ABC) và (ABD) là góc ∠CBD

D. (ACD) ⊥ (AIB)

Câu 3: Cho hình chóp S. ABC có SA ⊥ (ABC) và AB ⊥ BC , gọi I là trung điểm BC. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?

A. Góc SBA.

B. Góc SCA.

C. Góc SCB.

D. Góc SIA.

Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD), gọi O là tâm hình vuông ABCD. Khẳng định nào sau đây sai?

A. Góc giữa hai mặt phẳng (SBC) và (ABCD) là góc ∠ABS

B. Góc giữa hai mặt phẳng (SBD) và (ABCD) là góc ∠SOA

C. Góc giữa hai mặt phẳng (SAD) và (ABCD) là góc ∠SDA

D. (SAC) ⊥ (SBD)

Câu 5: Cho hình lập phương ABCD.A1B1C1D1 . Gọi α là góc giữa hai mặt phẳng (A1D1CB) và (ABCD). Chọn khẳng định đúng trong các khẳng định sau?

A. α = 45°

B. α = 30°

C. α = 60°

D. α = 90°

Câu 6: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có tâm O và SA ⊥ (ABCD). Khẳng định nào sau đây sai ?

A. Góc giữa hai mặt phẳng (SBC) và (ABCD) là góc ∠ABS

B. (SAC) ⊥ (SBD)

C. Góc giữa hai mặt phẳng (SBD) và (ABCD) là góc ∠SOA

D. Góc giữa hai mặt phẳng (SAD) và (ABCD) là góc ∠SDA

Câu 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc ∠ABC = 60°. Các cạnh SA ; SB ; SC đều bằng a(√3/2) . Gọi φ là góc của hai mặt phẳng (SAC) và (ABCD) . Giá trị tanφ bằng bao nhiêu?

A. 2√5

B. 3√5

C. 5√3

D. Đáp án khác

Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D. AB = 2a; AD = DC = a. Cạnh bên SA vuông góc với đáy và SA = a√2. Chọn khẳng định sai trong các khẳng định sau?

A. (SBC) ⊥ (SAC)

B. Giao tuyến của (SAB) và (SCD) song song với AB

C. (SDC) tạo với (BCD) một góc 60°

D. (SBC) tạo với đáy một góc 45°

Câu 9: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA’ = a; AD = 2a. Gọi α là góc giữa đường chéo A’C và đáy ABCD. Tính α .

A. α ≈ 20°45'

B. α ≈ 24°5'

C. α ≈ 30°18'

D. α ≈ 25°48'

Câu 10: Cho hình lập phương ABCD.A'B'C'D'. Xét mặt phẳng (A’BD). Trong các mệnh đề sau mệnh đề nào đúng?

A. Góc giữa mặt phẳng ( A’BD) và các mặt phẳng chứa các cạnh của hình lập phương bằng α mà tanα = 1/√2 .

B. Góc giữa mặt phẳng (A’BD) và các mặt phẳng chứa các cạnh của hình lập phương bằng α mà tanα = 1/√3

C. Góc giữa mặt phẳng (A’BD) và các mặt phẳng chứa các cạnh của hình lập phương phụ thuộc vào kích thước của hình lập phương.

D. Góc giữa mặt phẳng ( A’BD) và các mặt phẳng chứa các cạnh của hình lập phương bằng nhau.

Câu 11: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và đường cao SH bằng cạnh đáy. Tính số đo góc hợp bởi cạnh bên và mặt đáy.

A. 30°

B. 45°

C. 60°

D. 75°

Câu 12. Cho hình chóp tứ giác đều có cạnh đáy bằng a√2 và chiều cao bằng a√2/2 . Tính số đo của góc giữa mặt bên và mặt đáy.

A. 30°

B. 45°

C. 60°

D. 75°

Trên đây là tất cả những gì có trong Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11 mà chúng tôi muốn chia sẻ với các bạn. Bạn ấn tượng với điều gì nhất trong số đó? Liệu chúng tôi có bỏ sót điều gì nữa không? Nếu bạn có ý kiến về Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án) Tài liệu ôn tập môn toán lớp 11 , hãy cho chúng tôi biết ở phần bình luận bên dưới. Hoặc nếu thấy bài viết này hay và bổ ích, xin đừng quên chia sẻ nó đến những người khác.

Facebook
Bạn cần đưa danh sách của mình lên nvad.biz? Hãy liên hệ ngay với chúng tôi để được hỗ trợ đăng bài viết!
05 Comments

Post Comment

(*) Lưu ý:
+ 1: Bạn phải sử dụng email thật, một email xác thực sẽ được gửi đi sau khi bạn gửi comment để xác nhận bạn không phải là người máy. Nếu bạn không xác nhận email, comment của bạn CHẮC CHẮN sẽ không được duyệt.
+ 2: Bạn chỉ cần xác thực email cho lần đầu tiên, những lần sau sẽ không cần xác thực
+ 3: Chúng tôi sẽ không hiển thị công cộng email của bạn